Department of Chemistry Biochemistry


Associate Professor

  Office: PSD-129  Lab: D128
  Phone: (480)965-0356  Lab Phone: (480)727-9618
  Fax: (480) 965-2747

 Dr. ANNE JONES's Lab or Group Website

Research and Teaching Interests

The goal of my group is to understand how redox enzymes work and to reproduce their activities in synthetic peptide systems. Why redox enzymes? In addition to their biological roles in energy conversion, chemical transformation, signal transduction, and transport, redox enzymes play important industrial roles in sensors, drugs, green energy production, catalysis, bioremediation of pollutants, and nanotechnology. These proteins are at the interface of biochemistry, inorganic chemistry, physical chemistry and engineering. However, despite their ubiquity, their complex structures have obscured most investigations into mechanism and structure/function relationships. My laboratory will explore the roles of biological materials in tuning the chemistry of both naturally occurring and synthetic redox active prosthetic groups.

Questions to be addressed include:

1. What are the catalytic mechanisms of redox enzymes?

2. How redox enzymes can be re-engineered for use in devices such as fuel cells and biosensors?

3. How multiple redox cofactors in oxidoreductase complexes interact to produce desired chemistry and prevent side reactions?

4. How de novo redox enzymes can be designed to interface with electronic and biological components for technological and medical applications?

Techniques employed in my laboratory will include molecular biology, protein purification, enzymology, direct protein electrochemistry, computer simulations, de novo protein design, FTIR spectroscopy, circular dichroism, solid state peptide synthesis, HPLC, and chemical synthesis.


"A Bioelectrochemical Approach to Characterize Extracellular Electron Transfer by Synechocystis sp. PCC6803," A. Cereda, A. Hitchcock, M. D. Symes, L. Cronin, T. S. Bibby, A. K. Jones, PLOS One DOI: 10.1371/journal.pone.0091484 (2014)

"Metalloenzymes: Cutting out the middleman," S. Roy and A. K. Jones, Nature Chemical Biology 9 603-605 (2013)

"Sequential Oxidations of the Thiolates and the Cobalt Metallocenter in a Synthetic Metallopeptide: Implications for the Biosynthesis of Nitrile Hydratase," A. Dutta, M. Flores, S. Roy, J. Schmitt, G. A. Hamilton, H. E. Hartnett, J. Shearer, A. K. Jones, Inorg. Chem. 52 5236-5245 (2013)

"Biomimetic model for [FeFe]-hydrogenase: Asymmetrically disubstituted diiron complex with a redox-active 2,2'-bipyridyl ligand," S. Roy, T. Groy, A. K. Jones, Dalton Trans. DOI:10.1039/C2DT32457A (2013)

"Transparent gold as a platform for unmediated protein spectroelectrochemistry: investigation of cytochrome c and azurin," I. Ashur, O. Schulz, C. McIntosh, I. Pinkas, R. Ros, A. K. Jones, Langmuir 28 5861-5871 (2012)